Extreme eigenfunctions of adjacency matrices for planar graphs employed in spatial analyses

نویسنده

  • Daniel A. Griffith
چکیده

Mathematical properties of extreme eigenfunctions of popular geographic weights matrices used in spatial statistics are explored, and applications of these properties are presented. Three theorems are proposed and proved. These theorems pertain to the popular binary geographic weights matrix––an adjacency matrix––based upon a planar graph. They uncover relationships between the determinant of this matrix and its extreme eigenvalues, regression and the minimum eigenvalue of this matrix, and the eigenvectors of a row-standardized asymmetric version of this matrix and its symmetric similarity matrix counterpart. In addition, a conjecture is posited pertaining to estimation of the largest eigenvalue of the binary geographic weights matrix when the estimate obtained with the oldest and well-known method of matrix powering begins to oscillate between two trajectories in its convergence. An algorithm is outlined for calculating the extreme eigenvalues of geographic weights matrices based upon planar graphs. And, applications results for selected very large adjacency matrices are reported. © 2003 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON NEW CLASSES OF MULTICONE GRAPHS DETERMINED BY THEIR SPECTRUMS

A multicone graph is defined to be join of a clique and a regular graph. A graph $ G $ is cospectral with graph $ H $ if their adjacency matrices have the same eigenvalues. A graph $ G $ is said to be determined by its spectrum or DS for short, if for any graph $ H $ with $ Spec(G)=Spec(H)$, we conclude that $ G $ is isomorphic to $ H $. In this paper, we present new classes of multicone graphs...

متن کامل

The machine learning process in applying spatial relations of residential plans based on samples and adjacency matrix

The current world is moving towards the development of hardware or software presence of artificial intelligence in all fields of human work, and architecture is no exception. Now this research seeks to present a theoretical and practical model of intuitive design intelligence that shows the problem of learning layout and spatial relationships to artificial intelligence algorithms; Therefore, th...

متن کامل

Spectral radii of sparse random matrices

We establish bounds on the spectral radii for a large class of sparse random matrices, which includes the adjacency matrices of inhomogeneous Erdős-Rényi graphs. For the Erdős-Rényi graph G(n, d/n), our results imply that the smallest and second-largest eigenvalues of the adjacency matrix converge to the edges of the support of the asymptotic eigenvalue distribution provided that d log n. Toget...

متن کامل

ارزیابی ظرفیت همجواری قلمروهای فضایی در واحد مسکونی

  Paying attention to the meaning of territory in residential design affects the arrangement of built environment and bases it on the family members’ main needs. The paper tries to recognize the specific functions of each family in various spaces in order to understand cultural traits and subjective terri tories of the family. Then supposing that one spatial territory is Adjacent to the other, ...

متن کامل

Graphs Cospectral with a Friendship Graph or Its Complement

Let n be any positive integer and Fn be the friendship (or Dutch windmill) graph with 2n+1 vertices and 3n edges. Here we study graphs with the same adjacency spectrum as Fn. Two graphs are called cospectral if the eigenvalues multiset of their adjacency matrices are the same. Let G be a graph cospectral with Fn. Here we prove that if G has no cycle of length 4 or 5, then G ∼= Fn. Moreover if G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004